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The field-temperature phase diagram of a two-dimensional, three-spin interac- 
tion Ising model is studied using two different methods: mean field 
approximation and numerical transfer matrix techniques. The former leads to a 
rather rich phase diagram in which two separate phases with different sym- 
metries can be found, and which presents first-order transition lines, a triple 
point, and a critical end point, like the solid-liquid-gas phase diagram of a pure 
compound. The numerical transfer matrix study confirms part of these results, 
but does not clearly evidence the existence of the less symmetric phase. 
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1. I N T R O D U C T I O N  

Altlhough three-spin interactions (and, more generally, interactions involv- 
ing "products" of an odd number of Spins) cannot be taken into account 
for systems invariant under time reversal, they are allowed to appear when 
this constraint is removed, as in the lattice-gas representation of fluids with 
three-body interactions, (m) and in the Ising spin description of a certain 
class of cellular automata (Domany-Kinzel(3)). Our purpose is not to dis- 
cuss the relevance of three-spin interactions in real systems, but to 
understand from a theoretical point of view the role played by such inter- 
actions in the occurrence of phase transitions. 4 
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tributions can be found in Refs. 4-7. 
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In this paper, our aim is to study the two-dimensional system 
described by the Hamiltonian 

a e = - J  (1) 
( i , j , k )  i 

where the spins ai = -+ 1 are located at the vertices of a square lattice, and 
the first sum in the rhs of (1) runs over all triplets such that sites i, j, k 
belong to the same elementary square (Fig. la).  If J >  0, then for H =  0 the 
minimum of 2Jr is obviously obtained when and only when all spin 
variables are equal to one. 

With a suitable choice of the lattice and the triplets involved in the 
interactions, many other models sharing the same property could be 
defined. Examples of such systems are shown in Figs. l b - ld .  For  each of 
these models, the complete lattice can be generated by the Bravais trans- 
lations of an elementary cell defined by the interactions. Only the point 
group of the elementary cell and the group of the translations that generate 
the Bravais lattice leave the Hamiltonian invariant: therefore, the possible 
order parameters of the system, if any, should necessarily be associated 
with the breaking of one of these symmetries. 

To our knowledge, there exists no exact solution for any of these 
models even at zero applied field. Therefore, in the absence of exact results, 
we will use general arguments and rely on the convergence of the con- 
clusions obtained by various approximate methods. Our aim in this paper 
is to show that such systems do exhibit a variety of phase transitions. 

We shall focus now on the square lattice model as a typical example. 
Due to the remarkable feature that its ground state at zero applied field is 
nondegenerate, the system does not exhibit a symmetry-breaking order 
parameter, and the only possible phase transition (at zero field), if any, 
should be associated with a discontinuity of the magnetization. However, 
we shall see that the magnetization per spin, which is equal to 1 at T- -0 ,  
remains strictly positive at any finite temperature as a consequence of a 
Griffiths inequaltiy which rules out the existence of a paramagnetic phase. 
On the other hand, if we want to break the translational invariance of the 
system and try to exhibit the corresponding phase transition, it is necessary 
to apply an external field in order to reverse some of the spins and find a 
degenerate ground state. 

In what follows we shall first determine the ground states of the system 
in the presence of an external uniform magnetic field and find that, as a 
function of the field, the system undergoes two first-order transitions. We 
shall then study the system at finite temperature within a mean field 
approximation in which the form of the trial Hamiltonian reflects the struc- 
ture of the ground states, and determine the corresponding field- 
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Fig. 1. (a) Two-dimensional square lattice and the corresponding unit cell. (b) Two-dimen- 
sional triangular hexagonal lattice, interacting triplets: ABC, CDE, EFA, and ACE. (c) Three- 
dimensional cubic lattice; interacting triplets: all those obtained from ABC by the point group 
symmetry of the cube. (d) Spinel lattice; interacting triplets: ABC, BCD, ACD, and ABD. 
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temperature phase diagram. As a more precise and confirming approach to 
these results, in a subsequent section, we shall present the conclusions 
obtained from the transfer matrix technique applied to finite-width systems. 

2. M E A N  FIELD A P P R O X I M A T I O N  

As a first step, we determine the ground states of the square lattice in 
the presence of a uniform applied field. The Hamiltonian (1) can be written 
in the equivalent form 

)(g~ = 2 --J(~176 -]- 0"20304 + 0"30"40"1 -~- 0"40"10"2) 
sq 

-- �88 + 0"2 + 0"3 + 0"4) (2) 

Here, the four spins 0"a, 0"2, 0"3, 0"4 belong to the same elementary square: 
the summation now runs over all squares of the lattice, and the 1/4 factor 
before H takes into account the fact that each spin belongs to four squares. 

We now look for the configurations of four spins that minimize the 
energy of one elementary square. If the respective configurations in 
adjacent squares allow for a complete tiling over the whole lattice, then the 
minimum of ~ will be obtained as the sum of the minima of each of its 
terms. It is easy to see that 

- -  J(0-10"20"3 21- 0"20"304 "~- 0"3 ~ -Jl- 0-4010-2) - -  �88 + 0"2 + 0"3 + 0"4) 

= - 2 j m ( 1 6 m  2 - 10) - H m  (3) 

where m = (0"1 + 0"2 + 0"3 + 0"4)/4 can take the five values - 1, - 1/2, 0, 
1/2, 1. 

The corresponding five energies as functions of H are represented in 
Fig. 2. Their comparison shows that 
elementary square are: 

(a) i f - 4 j < . H ,  

(b) i f - 12J~<H~<  -~J ,  

(c) ifH~< -12J ,  

the various ground states for an 

m = + 1 (4 spins up) 

m = _1  (1 spin up, 3 down) 

m = - 1  (4 spins down) 

In each case, compatibility over the whole lattice is ensured. The state 
m = -�89 corresponds to a structure in which the unit cell is a square built 
with four elementary squares (Fig. 3a), but this structure is generally not 
periodic (Fig. 3b) and highly degenerate, although its entropy per spin goes 
to zero as 1 / x / N ,  where N is the number of spins. 

The stability conditions (a)-(c) show that, at T =  0, when H varies, 
the system undergoes two first-order phase transitions at He2 = --12J and 
Hc I = _4 j ,  respectively. 
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Fig. 2. Energy per elementary square as a function of the applied field for all the possible 
spin configurations. 
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Fig. 2;. (a) Unit  cell corresponding to the state m = -�89 (b) Example of a nonperiodic struc- 
ture obtained by tiling unit cells of type a. 
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Note that precisely at H =  H~2 a peculiar situation occurs. Any spin 
configuration for which any two up spins cannot be at a distance less than 
two lattice spacings is a ground state. In other words, the up spins can be 
considered as a lattice gas of particles with a variable density and a hard- 
core repulsion. The number of corresponding configurations can easily be 
shown to be larger than 2 N/4, S O  that a large residual entropy per spin 
(So>~0.1733) is observed at T = 0 ,  H=Hc2. The situation at H=Hcl is 
completely different, due to the fact that elementary squares with m = 1 and 
elementary squares with m - - - � 8 9  cannot coexist: thus, at H = H c l  the 
allowed ground states are all those found for m = -�89 plus the state with all 
spins up. 

Although our study will be limited to the two-dimensional lattice, the 
previous minimization procedure can be extended to a d-dimensional 
hypercubic lattice. For  d =  3 (Fig. lc) there are six elementary squares per 
cube: at T = 0 ,  when H varies there are still two first-order transitions 
characterized by the same magnetization jumps as for d =  2. The m = -�89 
solution is now found to be stable within the domain -36J<~H<<.-4J 
and the corresponding structure is strictly periodic, the up spins being 
located at the sites of a body-centered cubic lattice with a unit cell contain- 
ing eight elementary cubes. At H--- -36J ,  each of these up spins can now 
be either up or down, so that at this point the ground state is again highly 
degenerate, with a finite entropy So -- �88 In 2 per spin (the lattice gas descrip- 
tion used in the two-dimensional case remains valid). 

For  d =  4 there are 24 two-dimensional square facettes per cube, and 
in this case we have not been able to satisfy the compatibility conditions 
between facettes for the m = -�89 solution. However, the first-order phase 
transition where the mean magnetization per spin jumps from 1 to - 1 / 2  
does exist for d =  oe (constant interaction model(S~), although there is no 
sublattice description of the m = - 1 / 2  phase, i.e., no breaking of the trans- 
lational symmetry is available in this case. 

The structure of the ground states as a function of H leads us to 
assume that, at nonzero temperature, the state of the system can be charac- 
terized by two parameters m 1 and mR which are the respective 
magnetizations per spin of two subclasses of the N spins, such that at T =  0 
we have the following equivalences: 

rn = 1 ,~  rn~ = 1 and m 2 = 1 

m =  - �89162 1= 1 and m2= - 1  

m = - 1  r rnl = - 1  and m2= - 1  

Subclasses 1 and 2 contain, respectively, N/4 and 3N/4 spins. In two 
dimensions, these subclasses do not in general form sublattices, due to the 
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nonperiodic structure of the phase m = -�89 while at d = 3 the spins belong- 
ing to subclass 1 are located at the sites of the bcc lattice mentioned above. 

As a consequence of the previous remarks, in order to determine the 
variational free energy of the system, we choose a trial Hamiltonian fifo of 
the form 

2 ~ o = - h i  Z a i - h 2  2 ffJ (4) 
ie{l} j~: {2} 

where {1} and {2} denote, respectively, the subclasses 1 and 2. In each 
elementary square, there is exactly one spin belonging to { 1 } and three 
spins belonging to {2 }. Therefore, out of the four corresponding interacting 
triplets, one contains exclusively spins of subclass 2; each of the other three 
contains one spin of subclass 1 and two spins of subclass 2. 

It is straightforward to write down the variational free energy per spin: 

F_ 1 ln(2 cosh B h l ) _ _ ~  ln(2 cosh flh2 ) 
N 4fl 

1 3 
1 h~m, - h z m 2 -  3Jrn~m 2 - J m  3 --~ Hml --~ Hm2 
4 

(5) 

where 

mi = tanh flhi (i = 1, 2) (6) 

Minimizing with respect to the variational parameters h 1 and h 2, we 
obtain the equations 

h~ = 12Jm 2 + H (7a) 

h2 = 8Jml m2 + 4Jm~ + H (7b) 

so that, taking (6) into account, 

ml = tanh fl(12Jm 2 + H) (8a) 

m 2 = tanh fi(8Jml rn2 + 4Jrn 2 + H) (8b) 

These equations have an obvious solution m~ = m2 = m provided 

m = tanh fi(12Jm 2 + H) (9) 

yields the minimum value of (5). A simple graphical inspection (Fig. 4) 
shows that for given field and temperature, (9) has one or three solutions; 
the latter case corresponds to the existence of two minima for the free 
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Fig. 4. Graphical solution of Eq. (9) for three typical plots of y=tanhfl(12Jm2+H). 
(a) flJ= 0.25; H/J= 3. (b)f lJ= 0.25; H/J= O. (c)13J= 0.25; H/J= -3. 

energy and the possible occurrence of a first-order transition characterized 
by a discontinuous magnetization. Such a transition is not characterized by 
a symmetry:breaking order parameter. 

In the contrary, solutions of (8a) and (8b) with ml :Am2 if any corres- 
pond to a breaking of the translational invariance of the system and in this 
case m l -  rn2 will be a suitable order parameter. 

We have solved (8a) and (8b) in the following manner: ml in the rhs 
of (8b) is replaced by its expression as a function of m2 given by (Sa), 
yielding 

m 2 = tanh{ f l [8Jm2 tanh fl(12Jm22 + H)  + 4Jm~ + HI } (8c) 

For a given temperature and field, the possible solutions m2 of (8c) are 
found numerically. Each of them corresponds to well-defined values of rnl, 
h,, and h2, which, after being replaced into (5), determine the most stable 
solution. 

We have thus been able to determine the complete field-temperature 
phase diagram, which is represented Fig. 5 and has the following salient 
features. 
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Field-temperature phase diagram of the two-dimensional square model within the 
mean field approximation. 

All phase transitions are first order. A non-translational-invariant 
(NTI) phase, characterized by a nonzero value of the order parameter 
ml - m 2 ,  is stable in a finite domain. The translational-invariant (TI) phase 
is stable everywhere else; this phase is characterized by ml = m 2 = m; this 
parameter is discontinuous along a liquid-gas type line, which ends at a 
critical point whose coordinates are Hc/J=2.083, Tc/J=9.238. The 
location of this critical point can be determined analytically as follows: if 
m = y(m, T, H) is the self-consistent equation governing the behavior of m, 
the critical point is determined by expressing that the equation 
y(m, T, H ) -  m = 0 has a triple root mc in m, which implies 

y(mc, Tc, Hc) = mc 

~---~-Y (me, Tc, H c ) =  1 (10) 
0m 

632y (m~, T,,, H~) = 0 
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Here y(m, T, H)=tanh(12Jm2+H)/T and (10) is found to have the 
solution 

m c - ~  
1 To_ 16 Hc_ 8 l n ( 2 + x / ~ ) _  4 (11) 

It is worth mentioning that the NTI TI first-order transition line exhibits a 
point where dT/dH= 0, which implies as a consequence of the Clausius 
Clapeyron equation that at this point the magnetization jump is zero, and 
another point where dT/dH = oe, which implies that the entropy jump at 
this point is zero. The phase diagram also exhibits a triple point P whose 
coordinates, determined numerically, are 

He/J~- -1.25, Te/J~ 3.88 

Qualitatively, the phase diagram shows a striking similarity with the 
pressure-temperature diagram of a pure compound. Both of them exhibit a 
triple point and a critical point. The fluid phase is the equivalent of our TI 
phase and the role of the crystalline phase is played by our NTI phase. Just 
as the crystalline phase breaks the infinitesimal translational invariance of 
the fluid phase, the NTI phase breaks the translational invariance the TI 
phase lattice. 

When solving the self-consistent equations that determine m~ and m2, 
we did not have to pay special attention to the particular value H =  0. In 
this case, as the temperature increases the system exhibits at T/J= 5.95 a 
first-order phase transition where the magnetization drops from a positive 
finite value to zero. However, the existence of this high-temperature, zero- 
field "paramagnetic" phase is disproved by an inequality due to Griffiths, ~ 
which states that, given two sets of spins (21 and 122 such that (21 c(22, 
then if Se c s the thermal average of Si performed over the states of s is 
smaller than that performed over the states of f22; choosing now 121 as four 
spins at the vertices of an elementary square and (22 as the whole set of the 
N spins, we find easily that, at zero applied field, 

<Sl>a, 

<$1>a2 

Thus, one must have 

= ($1 >sq . . . .  = (tanh/~j)3 

= m in the TI phase 

rn ~> (tanh flj)3 (12) 

The violation of this inequality by the mean field results at zero field is not 
too surprising, since mean field predictions are exact for an infinite-dimen- 
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sional model, or, equivalently, for a constant interaction model where the 
interaction has to be renormalized, changing J into J /N  2 for a three-spin 
interaction; in the thermodynamic limit, (12) becomes m ~> 0, in agreement 
with our results. 

As a final remark to this section, we underline the fact that an 
identical phase diagram would be obtained for the three-dimensional case 
after rescaling H, the NTI  phase being in this case periodic and m ~ - m  2 
becoming a real order parameter. 

Predictions of the mean field theory are known to be sometimes 
questionable, but often qualitatively correct. In the next section we shall try 
to confirm or disprove the existence and order of the phase transitions that 
have just been found, using a completely different technique in which the 
two-dimensional character of the system is correctly taken into account. 

3. T R A N S F E R  M A T R I X  A P P L I E D  TO F I N I T E - W I D T H  S Y S T E M S  

3.1. Genera l  Ou t l ine  

In this section we present some results obtained from the numerical 
study of strips of finite width n (vertical direction) and very large length L 
(horizontal direction) as shown in Fig. 6. Each site of the square lattice is 
now characterized by two indices (i, j )  and we shall assume cyclic boun- 
dary conditions in both directions so that 

for any i, ) (~i,j ~i,j+ ~ i= l ..... L, j =  l,...,n 
for any j, ai+ L,j = ~i.j J 

We can write the Hamiltonian of this system as 

L 

i = 1  

i,j 

m 

m 

Fig. 6. Strip of width n and length L. 
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with 

~i ,  n =  Z --J((Ti, j(gi, j+ l ff i+ l,J+ 1 -[- ~i , j+ l (Ti+ l , j+ l (Ti+ l,J 
j = l  

~'- (Ti+ l , j+ l l~i + l,j(Ti, j -~  (Ti+ l,j(Ti, jl:Ti, j+ l)  

- �89 j + ai+ 1,j) 

Each vertical row of spins, characterized by index i, has 2" possible con- 
figurations. Given two respective configurations Ck and Ct of the two 
neighboring columns labeled by i and i+1 ,  let E(Ck, C~) be the 
corresponding value of ~,n. If we now construct the (2nx 2 n) symmetric 
matrix dg whose the elements are given by 

ogk,, = exp[ - f iE(Ck ,  C,)] (13) 

then the well-known transfer matrix formalism ensures that the free energy 
per spin of the strip, in the limit where its length L goes to infinity, is given 
by 

f,(fl, J, H ) :  - + l n [ 2  . . . . .  (fl, J, H)]  (14) 

where 2 . . . . .  is the largest (positive) eigenvatue of J / /a t  given values of n, fl, 
J,H. 

Therefore it is possible, in principle, to extract all the thermodynamic 
quantities of interest for any system of finite width n and infinite length. 
Following the evolution, for increasing values of n, of quantities that may 
display a "critical" behavior in the n ~ ~ limit is an essential approach to 
the properties of the real, two-dimensional system. Sophisticated numerical 
methods of investigation of these limiting properties are available in the 
case of critical phenomena associated with second-order phase transitions 
(e.g., Ref. 10). 

Our situation here is peculiar in the sense that we have to cross-check 
mean field predictions that involve only first-order phase transitions. 
Therefore, what we have done was essentially to determine the following 
quantities: magnetization/spin 

0 
m,(fl, J, H ) =  8Hf~(fl, J, H) 

susceptibility/spin 

0 2 

Z.(fl, J, H ) -  8H 2 f.(fl, J, H) 
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internal energy/spin 

entropy/spin 

specific heat/spin 

Un(fl, J, H)=0- ~ [flf,(fl, J, H)]  

Sn(fl, J, H) = ~2 ~ -~ f,(fl, J, H) 

C,(fl, J, H)= _f12 02 [flf,(fl, J, H)]  

For a given value of n one can obtain numerically the variation of these 
quantities at fixed temperature as H varies and study their evolution as n is 
increased. 

We now wish to make precise the conditions under which our 
numerical tasks have been carried out, and also (in part as a direct 
consequence of these conditions) the limitations to our subsequent 
conclusions: 

1. The widths considered for the strips lie in the range n = 2-6. 

2. For each value of n, the largest eigenvalue of the transfer matrix 
./g at fixed fl, J, H has been obtained by an iterative process: starting with 
some initial normalized vector V o with positive components, we obtain 

~ V o =  W1, 

~/gtVI= W2, 
~/~ Vl_ l = WI,  

when l goes to infinity; then 

w,/ l t  w~ll = v~ 

w2/ll W2ll = v2, etc. 

wt/lt Will = r l ,  etc. 

I1 w ,  II ~ ;. . . . . .  (fl, a, H)  

and V t converges toward the corresponding eigenvector. The iterative 
process was stopped as soon as 

s u p (  ]IWt]I-I,W,~[W?__.~[ IU] I [ V I _ W  l 1[,)<10_11 

3. Guided by the results of some preliminary trials and by the mean 
field predictions, our investigations in the (H, T) plane have taken place in 
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the domain -14~H/J<~2, 0<~ T/J<<, 12.5. (From now on, we use indif- 
ferently T or/3 according to convenience.) The simplest choice was to run 
through this domain of the (H; T) plane along lines parallel either to the H 
axis or to the T axis, i.e., at fixed T or at fixed H, inasmuch as we could 
recover easily some of the thermodynamic quantities of interest by 
numerical computation of the derivatives with respect to the free variable. 

We also expect that, given a hypothetical phase diagram for the 
infinite two-dimensional system, moving along a line of the (H, T) plane 
which is supposed to cross a transition line at a certain angle, the closer to 
a right angle that the intersection takes place, the clearer the announ- 
cement of the corresponding singularity will be reflected in the ther- 
modynamic observables of the finite-width systems obtained by taking the 
derivative with respect to the moving coordinate. 

Finally, we have explored the following lines: 

(a) Constant temperature: 

T/J= 0.32; 2; 5; 16/3; 8; 12.5 

(H/J varying between - 1 4  and +2).  

(b) Constant applied field: 

H/J=-2;--3xlO 3 ; - 2 x l O - 3 ; - l x l O - 3 ; O ; l x l O  3; 

2 x 10-3; 3 x 10 -3 

(T/J varying between 0.25 and 12.5). 

The reason for the set of small H/J values around zero was to allow 
for the determination of the magnetization and the susceptibility at zero 
field in addition to the thermal quantities and try to detect, if any, a trans- 
ition at zero applied field when T varies. 

(4) We have adopted the following criteria to ascertain a first-order 
phase transition in the infinite-width system: When crossing a first-order 
transition line in the phase diagram of the infinite system, one should 
observe a jump of m0 U, and S, while Z and C should present a delta- 
function contribution in addition to their regular part. It is also known in 
this case that, in the corresponding finite-width systems, as n is increased, 
the amplitudes of Z and C at their largest value are expected to behave as 
exp(kn), contrasting with the n ~ behavior observed in second-order trans- 
itions. 

Therefore, we will adopt the following criterion: let Zn,J,T(H) be the 
susceptibility as a function of H at fixed n, J, T; let Cn,s.~i(T) be the specific 
heat as a function of the temperature at fixed n, J, H. Then, if we are able 
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to extract from the successive profiles of )~,,j,~/(H) [resp. C,,s,H(T)] as n is 
increased a sequence of contributions that prefigure delta functions--i.e., 
peaks with increasing amplitudes and widths inversely proportional to their 
ampli tudes--and if, moreover, these amplitudes follow an exponential 
behavior with respect to n, we conclude that in the limit where n goes to 
infinity the corresponding transition will be of first order. 

5. Let us make a few general remarks about the results to be presen- 
ted. 

Due to the small number of values used for n, we do not pretend to 
present a thorough study of the problem. Although these values were suf- 
ficient in a limited number of cases to ascertain the existence of a first-order 
transition in the two-dimensional system, larger strips would have been 
necessary (if not sufficient) for a reliable conclusion in many cases, in par- 
ticular if the onset of second-order transitions was suspected and required 
finite-size scaling analysis. 

We also noted that the successive values of H for which Zn,j,T(H) 
presents a maximum when n is increased do not form a monotonic 
sequence, due to the fact that because of the cyclic boundary conditions on 
the strips, the phase with three spins down and one spin up per elementary 
square, which represents a ground state of the infinite system when - 1 2  ~< 
H/J<~-4/3, cannot be achieved when n is odd. On the contrary, the 
sequences of T values for which Cn,j,H(T) presents a maximum when n is 
increased are monotonic. These difficulties make it hard to determine 
precisely when a critical line (if critical) of the infinite system is being 
crossed over. 

3.2. Presentat ion of the Results 

For each of the two lines at constant temperature T/J=0.32 and 
T/J= 2, a first-order transition is clearly evidenced, at a critical field H~ 
whose extrapolated value (Hc_~--1.33J for T/J=0.32; Hc~--1.26J for 
T/J=2) is very close to the zero-temperature critical value Hq = 4 j  
predicted by the mean field theory. However, contrary to our expectations, 
no first-order transition shows up in the vicinity of H e 2 = - 1 2 J ;  even 
worse, at given temperature the susceptibility displays around this value a 
bump which remains practically constant in width and amplitude as a 
function of the size of the strip. The two cases T/J= 0.32 and T/J= 2 are 
illustrated by Figs. 7 and 8, respectively. 

For  the lines T/J= 5, 16/3, and 8, no positive conclusion about the 
nature of the transition corresponding to Hcl can be given; for each of these 
temperatures, the maximum of susceptibility increases at increasing n, but 
no reliable law can be obtained. No sign of the transition corresponding to 
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Fig. 7. Plots of free energy per spin, f ,  magnetization, m, susceptibility, X, as functions of H/J 
at T/J = 0.32 for strips of different widths n. Respective scales of H/J, f, m, and X are indicated 
in Table I. In (a), (c), and (e), the maximum value of ~( is much larger than the corresponding 
upper scale 35, and ~ appears practically as a delta-function profile. (a) T/J= 0.32, n = 2; (b) 
T/J=0.32, n = 2 ,  vicinity of H/J= - 1 2 ;  (c) T/J=O.32, n = 4 ;  (d) T/J=0.32, n = 4 ,  vicinity of 
H/J= - 1 2 ;  (e) T/J= 0.32, n = 6; (f) T/J= 0.32, n = 6, vicinity of H/J= --12. 
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Fig. 8. Plots of free energy per  spin, f ,  magnetization,  m, and susceptibility, X, as functions of 
H/J at T/J= 2.00 for strips of different widths n. Respective scales of H/J, f, m, and Z are 
indicated in Table I. (a) T/J= 2.00, n = 2, Xmax = 13.28 at H/J= --1.064; (b) T/J= 2.00, n = 4, 
Xmax = 275.3 at H/J= --1.200; (c) T/J= 2.00, n = 6, Zmax = 5710 at H/J= --1.242 (in this part,  

appears  practically as a delta-function profile). 
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Table I 

H f m Z 

Figure  min  max  min  max  min  max  min  max  

7a 
7b 

7c 

7d 
7e 

7f 

8a 
8b 

8c 

- 1 4  2 - 1 0 . 5  - 2 . 5  - 1  1 0 35 

13 - 1 1 . 4  - 9 . 1  - 7 . 6  - 1  0 0 1 
- 1 4  2 - 1 0 . 5  - 2 . 5  - 1  1 0 35 

- 1 3  - 1 1 . 4  - 9 . 1  - 7 . 6  - 1  0 0 1 

- 1 4  2 - 1 0 . 5  - 2 . 5  - 1  1 0 35 

- 1 3  - 1 1 . 4  - 9 . 1  - 7 . 6  --1 0 0 1 

--1.32 --0.68 - 3 . 3 5  - 2 . 9 5  - 1  1 0 15 
- 1 . 5 0  - 0 . 8 6  - 3 . 1 5  - 2 . 7 5  --1 1 0 300 

- 1.57 - 0.93 - 3.10 -- 2.70 - 1 1 0 5750 
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He2 can be traced. For  T/J= 12 a broad susceptibility bump of constant 
amplitude and width when n varies, centered at a positive value of the 
applied field, is observed. 

Information from lines at constant field does not lead to definite con- 
clusions. For  the line at H/J=--2, the maximum of the specific heat 
increases with increasing n, but no reliable law of the value of this 
maximum versus n can be obtained (the extrapolated location of this 
maximum on the H/J= - 2  axis is roughly T/J~-2.6). For H/J=O, both 
susceptibility and specific heat display the same type of behavior as in the 
previous case, with an extremum extrapolated at T/J~- 5.5 on the T axis. 

With the elements we use, all we can state at this stage is that the 
phase diagram of the infinite, two-dimensional model contains a transition 
line which, in the (H, T) plane, begins at H =  _4 j ,  T =  0 with a very large 
(very likely infinite, as required by the Clausius-Clapeyron equation) 
positive slope and is definitely first order in the strip 0 ~< T/J~< 2. No con- 
vincing evidence for the existence of a second branch starting at H = -12J ,  
T = 0  and encompassing what would be the NTI phase is available. 
Perhaps such a branch does not exist and the phase diagram would, like 
the pressure temperature phase diagram of a fluid, exhibit only one first- 
order transition line, the NTI  phase being inexistent. However, a 
preliminary investigation via Monte Carlo simulation seems to indicate 
that the NTI phase does indeed exist at low but not zero temperature, Ill) 
so that if the NTI  phase were to exist, at least part of the transition line 
ending at He2 would be second order. Incidentally, it may well be that the 
choice of order parameters used in Section 2 to describe the symmetry- 
breaking properties of the NTI phase could be improved, together with our 
understanding of the (possible) N T I - T I  transition. 

From our results, it is impossible to decide whether a transition takes 
place when the temperature varies at zero applied field (of course an exact 
solution of this case would be most welcome), so that we do not know if 
the first-order line starting at H =  Hc1, T =  0 does or does not cross the 
temperature axis. 

4. C O N C L U S I O N  

We have studied the field-temperature phase diagram of a two-dimen- 
sional, three-spin interaction Ising model with a singlet ground state at 
zero field. This work has been done using two different methods: a mean 
field approximation and transfer matrice technique. Within the mean field 
framework we found two phases, one (TI) has the translational invariance 
of the underlying square lattice, and the other (NTI), enclosed in a finite 
domain, breaks this translational invariance. The "ordered" NTI phase 
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presents some kind of residual disorder, but its number  of ground states 
behaves a s  N 1/2. The N T I - T I  phase transition is always first order. We also 
found inside the stability domain of the TI  phase a first-order, liquid-gas- 
type phase transition characterized by a discontinuity of the magnetization. 
The corresponding line ends at a critical point and meets the N T I - T I  
transition line at a triple point. 

These properties remain valid for a three-dimensional system, with the 
only difference that the N T I  phase in this case is strictly periodic. 

All the characteristic features of the phase diagram present striking 
similarities with those of a pure compound. 

The numerical study by the transfer matrix method of two-dimen- 
sional finite-width systems confirms the existence of the first-order trans- 
ition line for 4 j ~ <  H <  0. For  H~< 4 j ,  due to the insufficient maximum 
width of the strips, our  results suggest two possibilities: either the N T I - T I  
phase transition is second order, or the N T I  phase does not exist. This last 
possibility, however, seems to contradict a preliminary investigation by 
Monte Carlo simulations. 
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